Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness.

نویسندگان

  • S Dehmel
  • Y L Cui
  • S E Shore
چکیده

PURPOSE This review outlines the anatomical and functional bases of somatosensory influences on auditory processing in the normal brainstem and midbrain. It then explores how interactions between the auditory and somatosensory system are modified through deafness, and their impact on tinnitus is discussed. METHOD Literature review, tract tracing, immunohistochemistry, and in vivo electrophysiological recordings were used. RESULTS Somatosensory input originates in the dorsal root ganglia and trigeminal ganglia, and is transmitted directly and indirectly through 2nd-order nuclei to the ventral cochlear nucleus, dorsal cochlear nucleus (DCN), and inferior colliculus. The glutamatergic somatosensory afferents can be segregated from auditory nerve inputs by the type of vesicular glutamate transporters present in their terminals. Electrical stimulation of the somatosensory input results in a complex combination of excitation and inhibition, and alters the rate and timing of responses to acoustic stimulation. Deafness increases the spontaneous rates of those neurons that receive excitatory somatosensory input and results in a greater sensitivity of DCN neurons to trigeminal stimulation. CONCLUSIONS Auditory-somatosensory bimodal integration is already present in 1st-order auditory nuclei. The balance of excitation and inhibition elicited by somatosensory input is altered following deafness. The increase in somatosensory influence on auditory neurons when their auditory input is diminished could be due to cross-modal reinnervation or increased synaptic strength, and may contribute to mechanisms underlying somatic tinnitus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Crosstalk for Somatic Tinnitus: Abnormal Vergence Eye Movements

BACKGROUND Frequent oulomotricity problems with orthoptic testing were reported in patients with tinnitus. This study examines with objective recordings vergence eye movements in patients with somatic tinnitus patients with ability to modify their subjective tinnitus percept by various movements, such as jaw, neck, eye movements or skin pressure. METHODS Vergence eye movements were recorded w...

متن کامل

Tinnitus: neurobiological substrates.

Tinnitus is an auditory phantom sensation of ringing in the ears that is experienced when no external sound is present. It is a prevalent disorder that is frequently caused by insults to the peripheral auditory and somatosensory systems, especially in the elderly. This creates an imbalance between inhibitory and excitatory transmitter actions in the midbrain, auditory cortex and brainstem (wher...

متن کامل

Effects of Hyperbilirubinemia on Auditory Brainstem Response of Neonates Treated with Phototherapy

Introduction: One of the most common pathologies in neonates is hyperbilirubinemia, which is a good marker for damage to the central nervous system. The sensitivity of the auditory system to bilirubin has been previously documented, with much discrepancy in its effects on Auditory Brainstem Response results. Thus the objective of this study was to evaluate the effects of hyperbilirubinemia on ...

متن کامل

Auditory Brainstem Response Wave Amplitude Characteristics as a Diagnostic Tool in Children with Speech Delay with Unknown Causes

Speech delay with an unknown cause is a problem among children. This diagnosis is the last differential diagnosis after observing normal findings in routine hearing tests. The present study was undertaken to determine whether auditory brainstem responses to click stimuli are different between normally developing children and children suffering from delayed speech with unknown causes. In this cr...

متن کامل

Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus

This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the audit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of audiology

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2008